Welfare Implications of Mexico's Decision to Phaseout GM Maize Imports

Diego Maximiliano Macall, William Kerr, Stuart Smyth

June 30, 2021

- On December 9th 2020, a draft decree calling for the phase-out of both glyphosate and genetically modified (GM) maize was made public in Mexico (GAIN, 2020).
- On December 31st 2020, (22 days later!), the draft became a Presidential Decree (SEGOB, 2020). Maize will now be produced through agroecology and GM maize is banned.
- Mexican animal feed sector voiced its concerns about the Decree almost immediately.
- Does this mean GMO maize at any point of the supply chain?

- On December 9th 2020, a draft decree calling for the phase-out of both glyphosate and genetically modified (GM) maize was made public in Mexico (GAIN, 2020).
- On December 31st 2020, (22 days later!), the draft became a Presidential Decree (SEGOB, 2020). Maize will now be produced through agroecology and GM maize is banned.
- Mexican animal feed sector voiced its concerns about the Decree almost immediately.
- Does this mean GMO maize at any point of the supply chain?

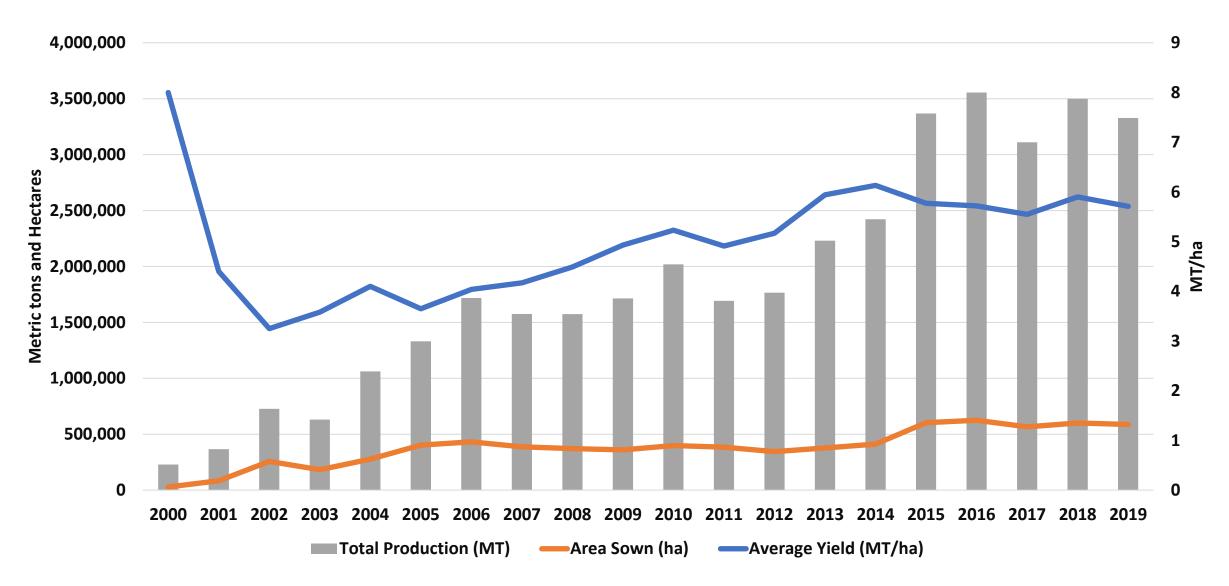
- On December 9th 2020, a draft decree calling for the phase-out of both glyphosate and genetically modified (GM) maize was made public in Mexico (GAIN, 2020).
- On December 31st 2020, (22 days later!), the draft became a Presidential Decree (SEGOB, 2020). Maize will now be produced through agroecology and GM maize is banned.
- Mexican animal feed sector voiced its concerns about the Decree almost immediately.
- Does this mean GMO maize at any point of the supply chain?

- On December 9th 2020, a draft decree calling for the phase-out of both glyphosate and genetically modified (GM) maize was made public in Mexico (GAIN, 2020).
- On December 31st 2020, (22 days later!), the draft became a Presidential Decree (SEGOB, 2020). Maize will now be produced through agroecology and GM maize is banned.
- Mexican animal feed sector voiced its concerns about the Decree almost immediately.
- Does this mean GMO maize at any point of the supply chain?

• Yellow maize is the principal ingredient in animal feed produced in Mexico, and practically all of it is imported from the US, where the adoption of GM maize is at near full (CONAFAB, 2021; ERS, 2021).

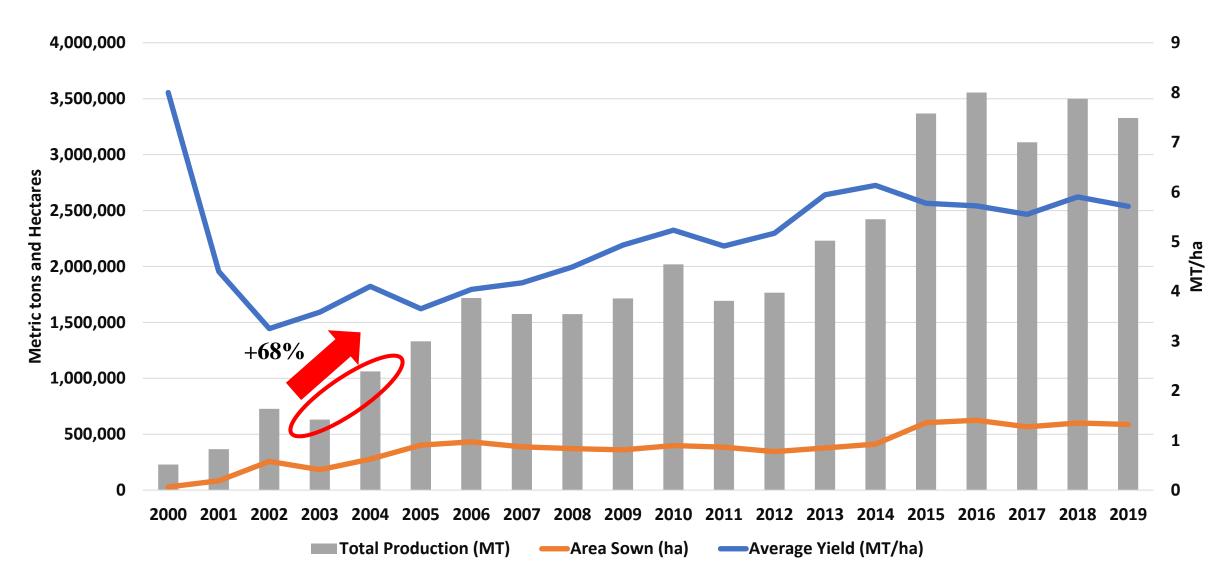
- Mexico has a complex relationship with GM Maize.
 - Quist and Chapela (2001) study found transgenes.
 - The Commission for Environmental Cooperation (CEC, 2004) found that living GM maize enters Mexico through imports, but it may also be carried by migrant workers returning from the US.

• Yellow maize is the principal ingredient in animal feed produced in Mexico, and practically all of it is imported from the US, where the adoption of GM maize is at near full (CONAFAB, 2021; ERS, 2021).

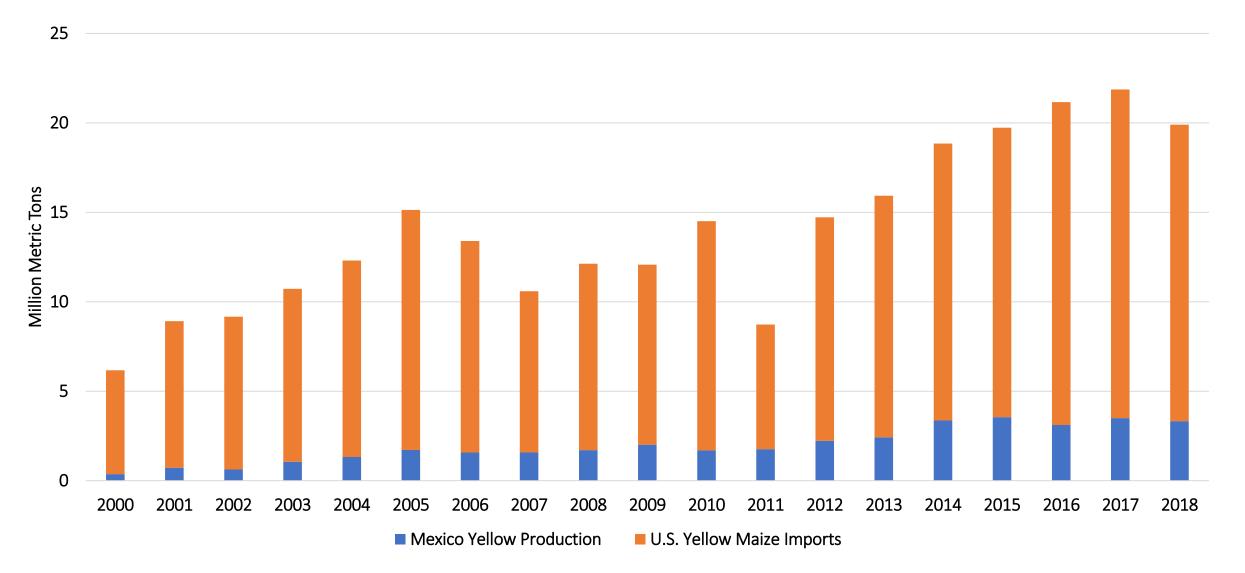

- Mexico has a complex relationship with GM Maize.
 - Quist and Chapela (2001) study found transgenes.
 - The Commission for Environmental Cooperation (CEC, 2004) found that living GM maize enters Mexico through imports, but it may also be carried by migrant workers returning from the US.

What is the economic impact of this policy?

- Our approach:
 - 1. We use a *partial equilibrium* framework to measure the welfare generated by yellow maize trade between Mexico and the US over the last 20 years.
 - 2. We use the *economic surplus* method to project the welfare change from Mexico's decision to substitute conventional maize production with agroecological maize production.


Mexican Yellow Maize Sector

Mexican yellow maize production, area sown, and yield, 2000-2019


Source: SIAP (2021)

Mexican yellow maize production, area sown, and yield, 2000-2019

Source: SIAP (2021)

Mexican yellow maize imports, 2000-2019

Source: ERS (2021) & SIAP (2021)

Implications of agroecology adoption

- On average 384,000 ha are planted annually with yellow maize in Mexico.
- 20-year average yield is 5 MT/ha through conventional ag.
- With conventional ag 2.35 M ha will need to be planted annually (+512%).
- With agroecology, -31% yield, 3.95 M ha will need to be planted annually (+761%).

Mexican yellow maize production cost structure

Cost component	Conventional yellow maize	Agroecological yellow maize
Land Preparation	\$154	\$154
Planting	\$217	\$217
Fertilization	\$407	\$0
Plot management	\$118	\$118
Irrigation	\$610	\$610
Pest management (insects, weeds, diseases)	\$217	\$415
Harvest	\$133	\$133
Incidentals	\$129	\$129
Cost per MT	\$1,985	\$1,776

Source: Adapted from FIRA (2021).

Note: Prices are in USD at 2010 nominal USD/Peso exchange rate.

Mexican yellow maize production cost structure

Cost component	Conventional yellow maize	Agroecological yellow maize
Land Preparation	\$154	\$154
Planting	\$217	\$217
Fertilization	\$407	\$0
Plot management	\$118	\$118
Irrigation	\$610	\$610
Pest management (insects, weeds, diseases)	\$217	<mark>\$415</mark>
Harvest	\$133	\$133
Incidentals	\$129	\$129
Cost per MT	\$1,985	\$1,776

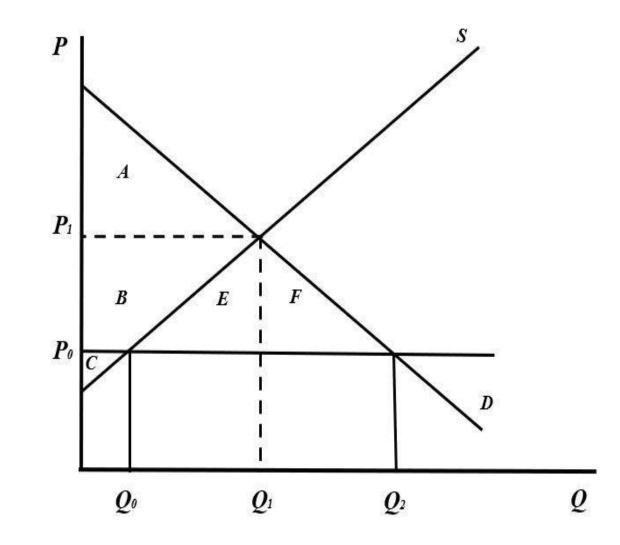
Source: Adapted from FIRA (2021).

Note: Prices are in USD at 2010 nominal USD/Peso exchange rate.

Assumptions of Parameters Used

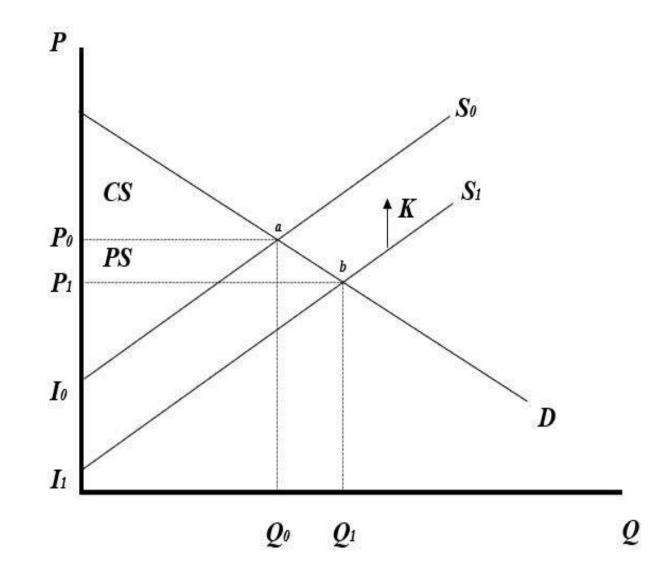
Parameter	Scenario 1	Scenario 2	Scenario 3
Initial Equilibrium Price	191	191	191
Agroecology Maize Seed Price	0	0	0
Equilibrium Quantity Metric Ton	13,636,908	13,636,908	19,899,882
% Change in Demand per year	0	1	0
Current Yield (MT/ha)	5	5	5
% Yield Increase	-31	-31	-31
% Cost Reduction	10.5	10.5	10.5
Supply Elasticity (ε)	0.22	0.22	0.22
Demand Elasticity, absolute value (η)	0.12	0.12	0.12
Initial Adoption Level (%)	100	100	100
Maximum Adoption Level (%)	100	100	100
Lag to maximum Adoption Level (years)	0	0	0

Assumptions of Parameters Used


Parameter	Scenario 1	Scenario 2	Scenario 3
Initial Equilibrium Price	191	191	191
Agroecology Maize Seed Price	0	0	0
Equilibrium Quantity Metric Ton	13,636,908	13,636,908	19,899,882
% Change in Demand per year	0	1	0
Current Yield (MT/ha)	5	5	5
% Yield Increase	-31	-31	-31
% Cost Reduction	10.5	10.5	10.5
Supply Elasticity (ε)	0.22	0.22	0.22
Demand Elasticity, absolute value (η)	0.12	0.12	0.12
Initial Adoption Level (%)	100	100	100
Maximum Adoption Level (%)	100	100	100
Lag to maximum Adoption Level (years)	0	0	0

Assumptions of Parameters Used

Parameter	Scenario 1	Scenario 2	Scenario 3
Initial Equilibrium Price	191	191	191
Agroecology Maize Seed Price	0	0	0
Equilibrium Quantity Metric Ton	13,636,908	13,636,908	19,899,882
% Change in Demand per year	0	1	0
Current Yield (MT/ha)	5	5	5
% Yield Increase	-31	-31	-31
% Cost Reduction	10.5	10.5	10.5
Supply Elasticity (ε)	0.22	0.22	0.22
Demand Elasticity, absolute value (η)	0.12	0.12	0.12
Initial Adoption Level (%)	100	100	100
Maximum Adoption Level (%)	100	100	100
Lag to maximum Adoption Level (years)	0	0	0


Methodology

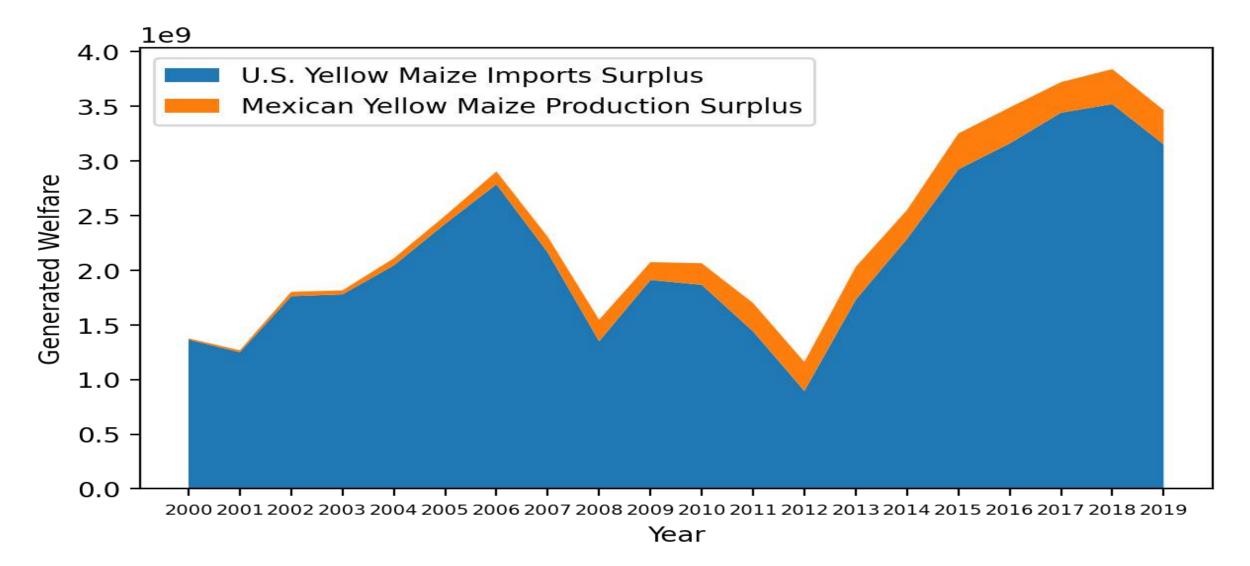
Mexican yellow maize market

Source: Authors

Mexican decision to implement agroecology

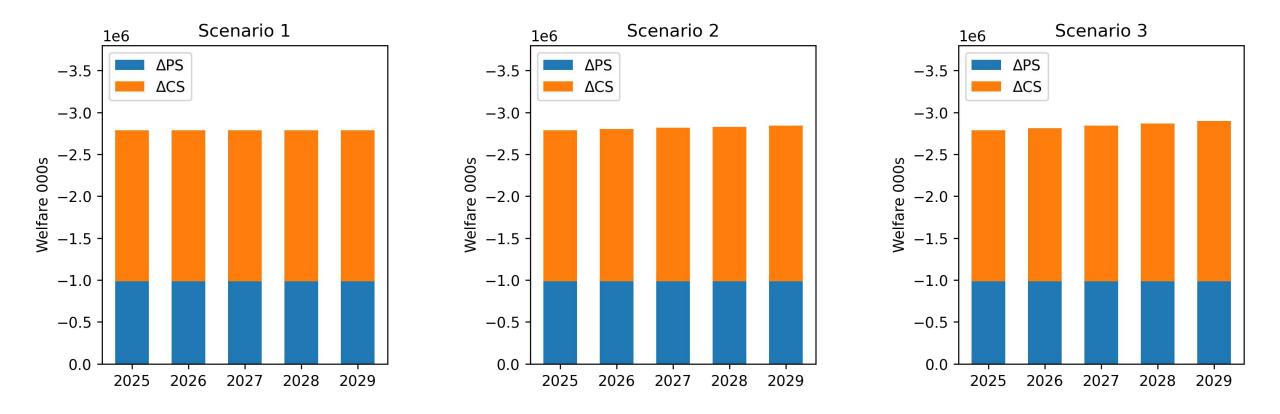
Source: Alston et al. (1995)

- $\Delta PS = PtQt (Kt Zt) (1 + 0.5Zt\eta)$
- $\Delta CS = PtQtZt(1 + 0.5Zt\eta)$
- $K_t = \{[E(Y)] / \varepsilon [E(C)] / [1 + E(Y)]\} p A_t (1 \delta_t)$
- Z = Kε/ (ε+η)

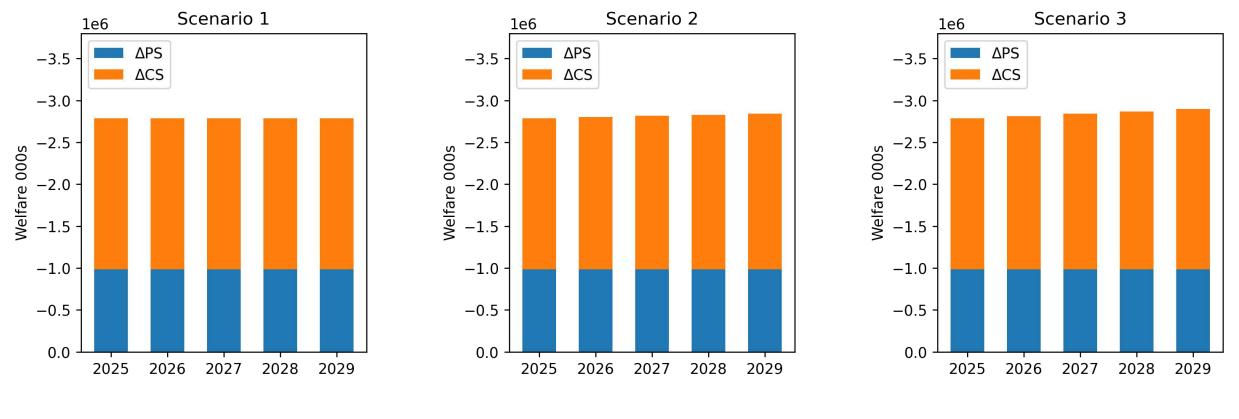

- $\Delta PS = PtQt (Kt Zt) (1 + 0.5Zt\eta)$
- $\Delta CS = PtQtZt(1 + 0.5Zt\eta)$
- $K_t = \{[E(Y)] / \varepsilon [E(C)] / [1 + E(Y)]\} p A_t (1 \delta_t)$
- Z = Kε/ (ε+η)

- $\Delta PS = PtQt (Kt Zt) (1 + 0.5Zt\eta)$
- $\Delta CS = PtQtZt(1 + 0.5Zt\eta)$
- $K_t = \{[E(Y)] / \varepsilon [E(C)] / [1 + E(Y)]\} p A_t (1 \delta_t)$
- Z = Kε/ (ε+η)

- $\Delta PS = PtQt (Kt Zt) (1 + 0.5Zt\eta)$
- $\Delta CS = PtQtZt(1 + 0.5Zt\eta)$
- $K_t = \{ [E(Y)] / \varepsilon [E(C)] / [1 + E(Y)] \} p A_t (1 \delta_t)$
- *Z* = *K*ε/ (ε+η)


Results

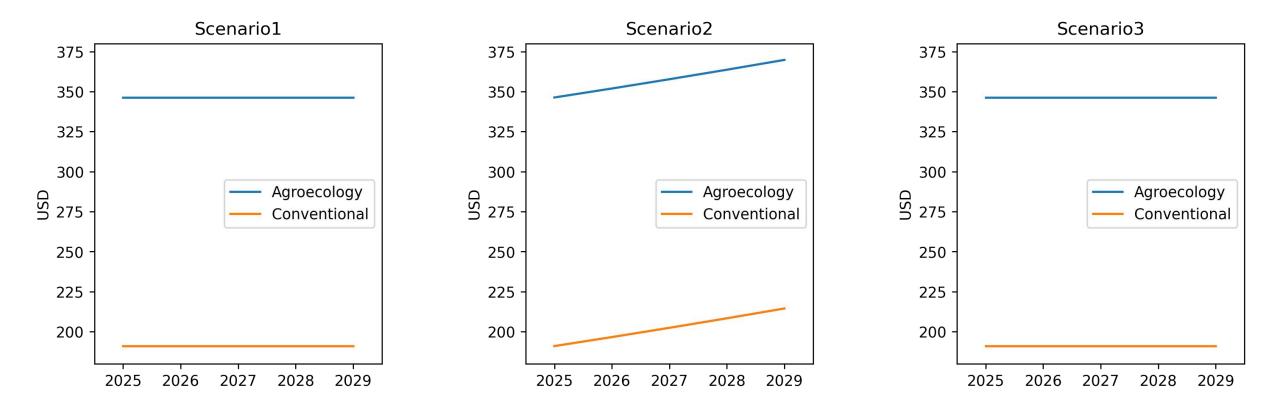
Mexican yellow maize production and imports surplus (2000-2019)


Source: Authors

Economic surplus from agroecology adoption results

Source: Authors

Economic surplus from agroecology adoption results



-12%

Yellow maize equilibrium price per metric ton

Source: Authors

Conclusion

- Banning GM Maize will be costly!
- Being conservative, the Price for 1 MT of yellow maize will increase by 81%.
- Does Mexico have the agroclimatic conditions necessary to produce yellow maize for its domestic feed industry?

Thank You! Questions?

Slides Available at: <u>https://diegomacall.github.io/presentations.html</u> Email: <u>diego.macall@usask.ca</u>